Reading view

Ship fast, optimize later: top AI engineers don't care about cost — they're prioritizing deployment

Across industries, rising compute expenses are often cited as a barrier to AI adoption — but leading companies are finding that cost is no longer the real constraint. The tougher challenges (and the ones top of mind for many tech leaders)? Latency, flexibility and capacity. At Wonder, for instance, AI adds a mere few cents per order; the food delivery and takeout company is much more concerned with cloud capacity with skyrocketing demands. Recursion, for its part, has been focused on balancing small and larger-scale training and deployment via on-premises clusters and the cloud; this has afforded the biotech company flexibility for rapid experimentation. The companies’ true in-the-wild experiences highlight a broader industry trend: For enterprises operating AI at scale, economics aren't the key decisive factor — the conversation has shifted from how to pay for AI to how fast it can be deployed and sustained. AI leaders from the two companies recently sat down with Venturebeat’s CEO and editor-in-chief Matt Marshall as part of VB’s traveling AI Impact Series. Here’s what they shared.

Wonder: Rethink what you assume about capacity

Wonder uses AI to power everything from recommendations to logistics — yet, as of now, reported CTO James Chen, AI adds just a few cents per order.

Chen explained that the technology component of a meal order costs 14 cents, the AI adds 2 to 3 cents, although that’s “going up really rapidly” to 5 to 8 cents. Still, that seems almost immaterial compared to total operating costs. Instead, the 100% cloud-native AI company’s main concern has been capacity with growing demand. Wonder was built with “the assumption” (which proved to be incorrect) that there would be “unlimited capacity” so they could move “super fast” and wouldn’t have to worry about managing infrastructure, Chen noted. But the company has grown quite a bit over the last few years, he said; as a result, about six months ago, “we started getting little signals from the cloud providers, ‘Hey, you might need to consider going to region two,’” because they were running out of capacity for CPU or data storage at their facilities as demand grew. It was “very shocking” that they had to move to plan B earlier than they anticipated. “Obviously it's good practice to be multi-region, but we were thinking maybe two more years down the road,” said Chen.

What's not economically feasible (yet)

Wonder built its own model to maximize its conversion rate, Chen noted; the goal is to surface new restaurants to relevant customers as much as possible. These are “isolated scenarios” where models are trained over time to be “very, very efficient and very fast.” Currently, the best bet for Wonder’s use case is large models, Chen noted. But in the long term, they’d like to move to small models that are hyper-customized to individuals (via AI agents or concierges) based on their purchase history and even their clickstream. “Having these micro models is definitely the best, but right now the cost is very expensive,” Chen noted. “If you try to create one for each person, it's just not economically feasible.”

Budgeting is an art, not a science

Wonder gives its devs and data scientists as much playroom as possible to experiment, and internal teams review the costs of use to make sure nobody turned on a model and “jacked up massive compute around a huge bill,” said Chen. The company is trying different things to offload to AI and operate within margins. “But then it's very hard to budget because you have no idea,” he said. One of the challenging things is the pace of development; when a new model comes out, “we can’t just sit there, right? We have to use it.” Budgeting for the unknown economics of a token-based system is “definitely art versus science.” A critical component in the software development lifecycle is preserving context when using large native models, he explained. When you find something that works, you can add it to your company’s “corpus of context” that can be sent with every request. That’s big and it costs money each time. “Over 50%, up to 80% of your costs is just resending the same information back into the same engine again on every request,” said Chen.

In theory, the more they do should require less cost per unit. “I know when a transaction happens, I'll pay the X cent tax for each one, but I don't want to be limited to use the technology for all these other creative ideas."

The 'vindication moment' for Recursion

Recursion, for its part, has focused on meeting broad-ranging compute needs via a hybrid infrastructure of on-premise clusters and cloud inference. When initially looking to build out its AI infrastructure, the company had to go with its own setup, as “the cloud providers didn't have very many good offerings,” explained CTO Ben Mabey. “The vindication moment was that we needed more compute and we looked to the cloud providers and they were like, ‘Maybe in a year or so.’” The company’s first cluster in 2017 incorporated Nvidia gaming GPUs (1080s, launched in 2016); they have since added Nvidia H100s and A100s, and use a Kubernetes cluster that they run in the cloud or on-prem. Addressing the longevity question, Mabey noted: “These gaming GPUs are actually still being used today, which is crazy, right? The myth that a GPU's life span is only three years, that's definitely not the case. A100s are still top of the list, they're the workhorse of the industry.”

Best use cases on-prem vs cloud; cost differences

More recently, Mabey’s team has been training a foundation model on Recursion’s image repository (which consists of petabytes of data and more than 200 pictures). This and other types of big training jobs have required a “massive cluster” and connected, multi-node setups. “When we need that fully-connected network and access to a lot of our data in a high parallel file system, we go on-prem,” he explained. On the other hand, shorter workloads run in the cloud. Recursion’s method is to “pre-empt” GPUs and Google tensor processing units (TPUs), which is the process of interrupting running GPU tasks to work on higher-priority ones. “Because we don't care about the speed in some of these inference workloads where we're uploading biological data, whether that's an image or sequencing data, DNA data,” Mabey explained. “We can say, ‘Give this to us in an hour,’ and we're fine if it kills the job.” From a cost perspective, moving large workloads on-prem is “conservatively” 10 times cheaper, Mabey noted; for a five year TCO, it's half the cost. On the other hand, for smaller storage needs, the cloud can be “pretty competitive” cost-wise. Ultimately, Mabey urged tech leaders to step back and determine whether they’re truly willing to commit to AI; cost-effective solutions typically require multi-year buy-ins. “From a psychological perspective, I've seen peers of ours who will not invest in compute, and as a result they're always paying on demand," said Mabey. "Their teams use far less compute because they don't want to run up the cloud bill. Innovation really gets hampered by people not wanting to burn money.”

Why IT leaders should pay attention to Canva’s ‘imagination era’ strategy

The rise of AI marks a critical shift away from decades defined by information-chasing and a push for more and more compute power. 

Canva co-founder and CPO Cameron Adams refers to this dawning time as the “imagination era.” Meaning: Individuals and enterprises must be able to turn creativity into action with AI.  

Canva hopes to position itself at the center of this shift with a sweeping new suite of tools. The company’s new Creative Operating System (COS) integrates AI across every layer of content creation, creating a single, comprehensive creativity platform rather than a simple, template-based design tool.

“We’re entering a new era where we need to rethink how we achieve our goals,” said Adams. “We’re enabling people’s imagination and giving them the tools they need to take action.”

An 'engine' for creativity

Adams describes Canva’s platform as a three-layer stack: The top Visual Suite layer containing designs, images and other content; a collaborative Canva AI plane at center; and a foundational proprietary model holding it all up. 

At the heart of Canva’s strategy is its Creative Operating System (COS) underlying. This “engine,” as Adams describes it, integrates documents, websites, presentations, sheets, whiteboards, videos, social content, hundreds of millions of photos, illustrations, a rich sound library, and numerous templates, charts, and branded elements.

The COS is getting a 2.0 upgrade, but the crucial advance is the “middle, crucial layer” that fully integrates AI and makes it accessible throughout various workflows, Adams explained. This gives creative and technical teams a single dashboard for generating, editing and launching all types of content.

The underlying model is trained to understand the “complexity of design” so the platform can build out various elements — such as photos, videos, textures, or 3D graphics — in real time, matching branding style without the need for manual adjustments. It also supports live collaboration, meaning teams across departments can co-create. 

With a unified dashboard, a user working on a specific design, for instance, can create a new piece of content (say, a presentation) within the same workflow, without having to switch to another window or platform. Also, if they generate an image and aren’t pleased with it, they don’t have to go back and create from scratch; they can immediately begin editing, changing colors or tone. 

Another new capability in COS, “Ask Canva,” provides direct design advice. Users can tag @Canva to get copy suggestions and smart edits; or, they can highlight an image and direct the AI assistant to modify it or generate variants. 

“It’s a really unique interaction,” said Adams, noting that this AI design partner is always present. “It’s a real collaboration between people and AI, and we think it’s a revolutionary change.”

Other new features include a 2.0 video editor and interactive form and email design with drag-and-drop tools. Further, Canva is now incorporated with Affinity, its unified app for pro designers incorporating vector, pixel and layer workflows, and Affinity is “free forever.” 

Automating intelligence, supporting marketing

Branding is critical for enterprise; Canva has introduced new tools to help organizations consistently showcase theirs across platforms. The new Canva Grow engine integrates business objectives into the creative process so teams can workshop, create, distribute and refine ads and other materials. 

As Adams explained: “It automatically scans your website, figures out who your audience is, what assets you use to promote your products, the message it needs to send out, the formats you want to send it out in, makes a creative for you, and you can deploy it directly to the platform without having to leave Canva.”

Marketing teams can now design and launch ads across platforms like Meta, track insights as they happen and refine future content based on performance metrics. “Your brand system is now available inside the AI you’re working with,” Adams noted. 

Success metrics and enterprise adoption

The impact of Canva’s COS is reflected in notable user metrics: More than 250 million people use Canva every month, just over 29 million of which are paid subscribers. Adams reports that 41 billion designs have been created on Canva since launch, which equates to 1 billion each month. 

“If you break that down, it turns into the crazy number of 386 designs being created every single second,” said Adams. Whereas in the early days, it took roughly an hour for users to create a single design. 

Canva customers include Walmart, Disney, Virgin Voyages, Pinterest, FedEx, Expedia and eXp Realty. DocuSign, for one, reported that it unlocked more than 500 hours of team capacity and saved $300,000-plus in design hours by fully integrating Canva into its content creation. Disney, meanwhile, uses translation capabilities for its internationalization work, Adams said. 

Competitors in the design space

Canva plays in an evolving landscape of professional design tools including Adobe Express and Figma; AI-powered challengers led by Microsoft Designer; and direct consumer alternatives like Visme and Piktochart.

Adobe Express (starting at $9.99 a month for premium features) is known for its ease of use and integration with the broader Adobe Creative Cloud ecosystem. It features professional-grade templates and access to Adobe’s extensive stock library, and has incorporated Google's Gemini 2.5 Flash image model and other gen AI features so that designers can create graphics via natural language prompts. Users with some design experience say they prefer its interface, controls and technical advantages over Canva (such as the ability to import high-fidelity PDFs). 

Figma (starting at $3 a month for professional plans) is touted for its real-time collaboration, advanced prototyping capabilities and deep integration with dev workflows; however, some say it has a steeper learning curve and higher-precision design tools, making it preferable for professional designers, developers and product teams working on more complex projects. 

Microsoft Designer (free version available; although a Microsoft 365 subscription starting at $9.99 a month unlocks additional features) benefits from its integration with Microsoft’s AI capabilities, Copilot layout and text generation and Dall-E powered image generation. The platform’s “Inspire Me” and “New Ideas” buttons provide design variations, and users can also import data from Excel, add 3D models from PowerPoint and access images from OneDrive. 

However, users report that its stock photos and template and image libraries are limited compared to Canva's extensive collection, and its visuals can come across as outdated. 

Canva’s advantage seems to be in its extensive template library (more than 600,000 ready-to-use) and asset library (141 million-plus stock photos, videos, graphics, and audio elements).​ Its platform is also praised for its ease of use and interface friendly to non-designers, allowing them to begin quickly without training. 

Canva has also expanded into a variety of content types — documents, websites, presentations, whiteboards, videos, and more — making its platform a comprehensive visual suite than just a graphics tool. 

Canva has four pricing tiers: Canva Free for one user; Canva Pro for $120 a year for one person; Canva Teams for $100 a year for each team member; and the custom-priced Canva Enterprise. 

Key takeaways: Be open, embrace human-AI collaboration

Canva’s COS is underpinned by Canva’s frontier model, an in-house, proprietary engine based on years of R&D and research partnerships, including the acquisition of visual AI company Leonardo. Adams notes that Canva works with top AI providers including OpenAI, Anthropic and Google. 

For technology teams, Canva’s approach offers important lessons, including a commitment to openness. “There are so many models floating around,” Adams noted; it’s important for enterprises to recognize when they should work with top models and when they should develop their own proprietary ones, he advised. 

For instance, OpenAI and Anthropic recently announced integrations with Canva as a visual layer because, as Adams explained, they realized they didn’t have the capability to create the same kinds of editable designs that Canva can. This creates a mutually-beneficial ecosystem. 

Ultimately, Adams noted: “We have this underlying philosophy that the future is people and technology working together. It's not an either or. We want people to be at the center, to be the ones with the creative spark, and to use AI as a collaborator.”

❌