Reading view

The Week’s 10 Biggest Funding Rounds: A Varied Lineup, Led By Crypto And Parking

Want to keep track of the largest startup funding deals in 2025 with our curated list of $100 million-plus venture deals to U.S.-based companies? Check out The Crunchbase Megadeals Board.

This is a weekly feature that runs down the week’s top 10 announced funding rounds in the U.S. Check out last week’s biggest funding rounds here.

This week has been a busy one for good-sized rounds, led by $500 million financings for crypto unicorn Ripple and AI-enabled parking provider Metropolis. We also saw multiple large financings for biotech startups, plus some big rounds for cybersecurity and enterprise software.

1. (tied) Ripple, $500M, cryptocurrency: San Francisco-based crypto payments company Ripple raised $500 million at a $40 billion valuation. Funds managed by affiliates of Fortress Investment Group and Citadel Securities led the investment, along with Pantera Capital, Galaxy Digital, Brevan Howard and Marshall Wace.

1. (tied) Metropolis, $500M, parking: Metropolis, an AI-powered checkout-free parking platform, announced that it has secured $1.6 billion in debt and equity financing, including a $500 million Series D at a $5 billion valuation. LionTree led the equity financing for Los Angeles-based Metropolis, while JP Morgan Chase Bank provided a $1.1 billion term loan.

3. Armis, $435M, cybersecurity: Armis, a provider of tools for monitoring cyber risk exposure, closed on $435 million in what it described as pre-IPO funding round. Goldman Sachs Growth Equity led the financing, which set a $6.1 billion valuation for the 10-year-old, San Francisco-based company.

4. Synchron, $200M, neurotech: Synchron, a developer of nonsurgical brain-computer interface technology, picked up $200 million in Series D funding led by Double Point Ventures. The New York-based company wants to use its technology to restore communication and mobility for people with paralysis.

5. Hippocratic AI, $126M, healthcare AI: Hippocratic AI, a developer of generative AI healthcare agents, landed $126 million in Series C financing. Avenir led the round, which set a $3.4 billion valuation for the Palo Alto, California-based company.

6. MoEngage, $100M, marketing automation: MoEngage, an AI-enabled customer engagement platform, raised $100 million in new financing, with reportedly 60% going to the company and 40% going to secondary share sales. Goldman Sachs Alternatives and A91 Partners led the financing.

7. Infravision, $91M, aerial robotics: Infravision, a company that aims to transform how power lines are built and maintained with aerial robotics, raised $91 million in Series B funding. Singapore’s GIC led the financing for the 7-year-old, Austin-based startup.

8. Reevo, $80M, AI go-to-market tools: Santa Clara, California-based Reevo, developer of an AI platform for managing go-to-market strategy and processes, launched publicly and announced it has raised $80 million in funding co-led by Khosla Ventures and Kleiner Perkins.

9. Neok Bio, $75M, biotech: Palo Alto, California-based Neok Bio, a startup focused on developing antibody drug conjugates for improving cancer outcomes, emerged from stealth with $75 million, backed by Korean biotech ABL Bio.

10. Azalea Therapeutics, $65M, genomic medicines: Berkeley, California-based Azalea Therapeutics, a developer of precision genomic medicines, launched from stealth and announced it has raised $65 million in a Series A led by Third Rock Ventures.

Methodology

We tracked the largest announced rounds in the Crunchbase database that were raised by U.S.-based companies for the period of Nov. 1-7. Although most announced rounds are represented in the database, there could be a small time lag as some rounds are reported late in the week.

Illustration: Dom Guzman

Microsoft’s Copilot can now build apps and automate your job — here’s how it works

Microsoft is launching a significant expansion of its Copilot AI assistant on Tuesday, introducing tools that let employees build applications, automate workflows, and create specialized AI agents using only conversational prompts — no coding required.

The new capabilities, called App Builder and Workflows, mark Microsoft's most aggressive attempt yet to merge artificial intelligence with software development, enabling the estimated 100 million Microsoft 365 users to create business tools as easily as they currently draft emails or build spreadsheets.

"We really believe that a main part of an AI-forward employee, not just developers, will be to create agents, workflows and apps," Charles Lamanna, Microsoft's president of business and industry Copilot, said in an interview with VentureBeat. "Part of the job will be to build and create these things."

The announcement comes as Microsoft deepens its commitment to AI-powered productivity tools while navigating a complex partnership with OpenAI, the creator of the underlying technology that powers Copilot. On the same day, OpenAI completed its restructuring into a for-profit entity, with Microsoft receiving a 27% ownership stake valued at approximately $135 billion.

How natural language prompts now create fully functional business applications

The new features transform Copilot from a conversational assistant into what Microsoft envisions as a comprehensive development environment accessible to non-technical workers. Users can now describe an application they need — such as a project tracker with dashboards and task assignments — and Copilot will generate a working app complete with a database backend, user interface, and security controls.

"If you're right inside of Copilot, you can now have a conversation to build an application complete with a backing database and a security model," Lamanna explained. "You can make edit requests and update requests and change requests so you can tune the app to get exactly the experience you want before you share it with other users."

The App Builder stores data in Microsoft Lists, the company's lightweight database system, and allows users to share finished applications via a simple link—similar to sharing a document. The Workflows agent, meanwhile, automates routine tasks across Microsoft's ecosystem of products, including Outlook, Teams, SharePoint, and Planner, by converting natural language descriptions into automated processes.

A third component, a simplified version of Microsoft's Copilot Studio agent-building platform, lets users create specialized AI assistants tailored to specific tasks or knowledge domains, drawing from SharePoint documents, meeting transcripts, emails, and external systems.

All three capabilities are included in the existing $30-per-month Microsoft 365 Copilot subscription at no additional cost — a pricing decision Lamanna characterized as consistent with Microsoft's historical approach of bundling significant value into its productivity suite.

"That's what Microsoft always does. We try to do a huge amount of value at a low price," he said. "If you go look at Office, you think about Excel, Word, PowerPoint, Exchange, all that for like eight bucks a month. That's a pretty good deal."

Why Microsoft's nine-year bet on low-code development is finally paying off

The new tools represent the culmination of a nine-year effort by Microsoft to democratize software development through its Power Platform — a collection of low-code and no-code development tools that has grown to 56 million monthly active users, according to figures the company disclosed in recent earnings reports.

Lamanna, who has led the Power Platform initiative since its inception, said the integration into Copilot marks a fundamental shift in how these capabilities reach users. Rather than requiring workers to visit a separate website or learn a specialized interface, the development tools now exist within the same conversational window they already use for AI-assisted tasks.

"One of the big things that we're excited about is Copilot — that's a tool for literally every office worker," Lamanna said. "Every office worker, just like they research data, they analyze data, they reason over topics, they also will be creating apps, agents and workflows."

The integration offers significant technical advantages, he argued. Because Copilot already indexes a user's Microsoft 365 content — emails, documents, meetings, and organizational data — it can incorporate that context into the applications and workflows it builds. If a user asks for "an app for Project Spartan," Copilot can draw from existing communications to understand what that project entails and suggest relevant features.

"If you go to those other tools, they have no idea what the heck Project Spartan is," Lamanna said, referencing competing low-code platforms from companies like Google, Salesforce, and ServiceNow. "But if you do it inside of Copilot and inside of the App Builder, it's able to draw from all that information and context."

Microsoft claims the apps created through these tools are "full-stack applications" with proper databases secured through the same identity systems used across its enterprise products — distinguishing them from simpler front-end tools offered by competitors. The company also emphasized that its existing governance, security, and data loss prevention policies automatically apply to apps and workflows created through Copilot.

Where professional developers still matter in an AI-powered workplace

While Microsoft positions the new capabilities as accessible to all office workers, Lamanna was careful to delineate where professional developers remain essential. His dividing line centers on whether a system interacts with parties outside the organization.

"Anything that leaves the boundaries of your company warrants developer involvement," he said. "If you want to build an agent and put it on your website, you should have developers involved. Or if you want to build an automation which interfaces directly with your customers, or an app or a website which interfaces directly with your customers, you want professionals involved."

The reasoning is risk-based: external-facing systems carry greater potential for data breaches, security vulnerabilities, or business errors. "You don't want people getting refunds they shouldn't," Lamanna noted.

For internal use cases — approval workflows, project tracking, team dashboards — Microsoft believes the new tools can handle the majority of needs without IT department involvement. But the company has built "no cliffs," in Lamanna's terminology, allowing users to migrate simple apps to more sophisticated platforms as needs grow.

Apps created in the conversational App Builder can be opened in Power Apps, Microsoft's full development environment, where they can be connected to Dataverse, the company's enterprise database, or extended with custom code. Similarly, simple workflows can graduate to the full Power Automate platform, and basic agents can be enhanced in the complete Copilot Studio.

"We have this mantra called no cliffs," Lamanna said. "If your app gets too complicated for the App Builder, you can always edit and open it in Power Apps. You can jump over to the richer experience, and if you're really sophisticated, you can even go from those experiences into Azure."

This architecture addresses a problem that has plagued previous generations of easy-to-use development tools: users who outgrow the simplified environment often must rebuild from scratch on professional platforms. "People really do not like easy-to-use development tools if I have to throw everything away and start over," Lamanna said.

What happens when every employee can build apps without IT approval

The democratization of software development raises questions about governance, maintenance, and organizational complexity — issues Microsoft has worked to address through administrative controls.

IT administrators can view all applications, workflows, and agents created within their organization through a centralized inventory in the Microsoft 365 admin center. They can reassign ownership, disable access at the group level, or "promote" particularly useful employee-created apps to officially supported status.

"We have a bunch of customers who have this approach where it's like, let 1,000 apps bloom, and then the best ones, I go upgrade and make them IT-governed or central," Lamanna said.

The system also includes provisions for when employees leave. Apps and workflows remain accessible for 60 days, during which managers can claim ownership — similar to how OneDrive files are handled when someone departs.

Lamanna argued that most employee-created apps don't warrant significant IT oversight. "It's just not worth inspecting an app that John, Susie, and Bob use to do their job," he said. "It should concern itself with the app that ends up being used by 2,000 people, and that will pop up in that dashboard."

Still, the proliferation of employee-created applications could create challenges. Users have expressed frustration with Microsoft's increasing emphasis on AI features across its products, with some giving the Microsoft 365 mobile app one-star ratings after a recent update prioritized Copilot over traditional file access.

The tools also arrive as enterprises grapple with "shadow IT" — unsanctioned software and systems that employees adopt without official approval. While Microsoft's governance controls aim to provide visibility, the ease of creating new applications could accelerate the pace at which these systems multiply.

The ambitious plan to turn 500 million workers into software builders

Microsoft's ambitions for the technology extend far beyond incremental productivity gains. Lamanna envisions a fundamental transformation of what it means to be an office worker — one where building software becomes as routine as creating spreadsheets.

"Just like how 20 years ago you put on your resume that you could use pivot tables in Excel, people are going to start saying that they can use App Builder and workflow agents, even if they're just in the finance department or the sales department," he said.

The numbers he's targeting are staggering. With 56 million people already using Power Platform, Lamanna believes the integration into Copilot could eventually reach 500 million builders. "Early days still, but I think it's certainly encouraging," he said.

The features are currently available only to customers in Microsoft's Frontier Program — an early access initiative for Microsoft 365 Copilot subscribers. The company has not disclosed how many organizations participate in the program or when the tools will reach general availability.

The announcement fits within Microsoft's larger strategy of embedding AI capabilities throughout its product portfolio, driven by its partnership with OpenAI. Under the restructured agreement announced Tuesday, Microsoft will have access to OpenAI's technology through 2032, including models that achieve artificial general intelligence (AGI) — though such systems do not yet exist. Microsoft has also begun integrating Copilot into its new companion apps for Windows 11, which provide quick access to contacts, files, and calendar information.

The aggressive integration of AI features across Microsoft's ecosystem has drawn mixed reactions. While enterprise customers have shown interest in productivity gains, the rapid pace of change and ubiquity of AI prompts have frustrated some users who prefer traditional workflows.

For Microsoft, however, the calculation is clear: if even a fraction of its user base begins creating applications and automations, it would represent a massive expansion of the effective software development workforce — and further entrench customers in Microsoft's ecosystem. The company is betting that the same natural language interface that made ChatGPT accessible to millions can finally unlock the decades-old promise of empowering everyday workers to build their own tools.

The App Builder and Workflows agents are available starting today through the Microsoft 365 Copilot Agent Store for Frontier Program participants.

Whether that future arrives depends not just on the technology's capabilities, but on a more fundamental question: Do millions of office workers actually want to become part-time software developers? Microsoft is about to find out if the answer is yes — or if some jobs are better left to the professionals.

‘AI is tearing companies apart’: Writer AI CEO slams Fortune 500 leaders for mismanaging tech

May Habib, co-founder and CEO of Writer AI, delivered one of the bluntest assessments of corporate AI failures at the TED AI conference on Tuesday, revealing that nearly half of Fortune 500 executives believe artificial intelligence is actively damaging their organizations — and placing the blame squarely on leadership's shoulders.

The problem, according to Habib, isn't the technology. It's that business leaders are making a category error, treating AI transformation like previous technology rollouts and delegating it to IT departments. This approach, she warned, has led to "billions of dollars spent on AI initiatives that are going nowhere."

"Earlier this year, we did a survey of 800 Fortune 500 C-suite executives," Habib told the audience of Silicon Valley executives and investors. "42% of them said AI is tearing their company apart."

The diagnosis challenges conventional wisdom about how enterprises should approach AI adoption. While most major companies have stood up AI task forces, appointed chief AI officers, or expanded IT budgets, Habib argues these moves reflect a fundamental misunderstanding of what AI represents: not another software tool, but a wholesale reorganization of how work gets done.

"There is something leaders are missing when they compare AI to just another tech tool," Habib said. "This is not like giving accountants calculators or bankers Excel or designers Photoshop."

Why the 'old playbook' of delegating to IT departments is failing companies

Habib, whose company has spent five years building AI systems for Fortune 500 companies and logged two million miles visiting customer sites, said the pattern is consistent: "When generative AI started showing up, we turned to the old playbook. We turned to IT and said, 'Go figure this out.'"

That approach fails, she argued, because AI fundamentally changes the economics and organization of work itself. "For 100 years, enterprises have been built around the idea that execution is expensive and hard," Habib said. "The enterprise built complex org charts, complex processes, all to manage people doing stuff."

AI inverts that model. "Execution is going from scarce and expensive to programmatic, on-demand and abundant," she said. In this new paradigm, the bottleneck shifts from execution capacity to strategic design — a shift that requires business leaders, not IT departments, to drive transformation.

"With AI technology, it can no longer be centralized. It's in every workflow, every business," Habib said. "It is now the most important part of a business leader's job. It cannot be delegated."

The statement represents a direct challenge to how most large organizations have structured their AI initiatives, with centralized centers of excellence, dedicated AI teams, or IT-led implementations that business units are expected to adopt.

A generational power shift is happening based on who understands AI workflow design

Habib framed the shift in dramatic terms: "A generational transfer of power is happening right now. It's not about your age or how long you've been at a company. The generational transfer of power is about the nature of leadership itself."

Traditional leadership, she argued, has been defined by the ability to manage complexity — big teams, big budgets, intricate processes. "The identity of leaders at these companies, people like us, has been tied to old school power structures: control, hierarchy, how big our teams are, how big our budgets are. Our value is measured by the sheer amount of complexity we could manage," Habib said. "Today we reward leaders for this. We promote leaders for this."

AI makes that model obsolete. "When I am able to 10x the output of my team or do things that could never be possible, work is no longer about the 1x," she said. "Leadership is no longer about managing complex human execution."

Instead, Habib outlined three fundamental shifts that define what she calls "AI-first leaders" — executives her company has worked with who have successfully deployed AI agents solving "$100 million plus problems."

The first shift: Taking a machete to enterprise complexity

The new leadership mandate, according to Habib, is "taking a machete to the complexity that has calcified so many organizations." She pointed to the layers of friction that have accumulated in enterprises: "Brilliant ideas dying in memos, the endless cycles of approvals, the death by 1,000 clicks, meetings about meetings — a death, by the way, that's happening in 17 different browser tabs each for software that promises to be a single source of truth."

Rather than accepting this complexity as inevitable, AI-first leaders redesign workflows from first principles. "There are very few legacy systems that can't be replaced in your organization, that won't be replaced," Habib said. "But they're not going to be replaced by another monolithic piece of software. They can only be replaced by a business leader articulating business logic and getting that into an agentic system."

She offered a concrete example: "We have customers where it used to take them seven months to get a creative campaign — not even a product, a campaign. Now they can go from TikTok trend to digital shelf in 30 days. That is radical simplicity."

The catch, she emphasized, is that CIOs can't drive this transformation alone. "Your CIO can't help flatten your org chart. Only a business leader can look at workflows and say, 'This part is necessary genius, this part is bureaucratic scar tissue that has to go.'"

The second shift: Managing the fear as career ladders disappear

When AI handles execution, "your humans are liberated to do what they're amazing at: judgment, strategy, creativity," Habib explained. "The old leadership playbook was about managing headcount. We managed people against revenue: one business development rep for every three account executives, one marketer for every five salespeople."

But this liberation carries profound challenges that leaders must address directly. Habib acknowledged the elephant in the room that many executives avoid discussing: "These changes are still frightening for people, even when it's become unholy to talk about it." She's witnessed the fear firsthand. "It shows up as tears in an AI workshop when someone feels like their old skill set isn't translated to the new."

She introduced a term for a common form of resistance: "productivity anchoring" — when employees "cling to the hard way of doing things because they feel productive, because their self-worth is tied to them, even when empirically AI can be better."

The solution isn't to look away. "We have to design new pathways to impact, to show your people their value is not in executing a task. Their value is in orchestrating systems of execution, to ask the next great question," Habib said. She advocates replacing career "ladders" with "lattices" where "people need to grow laterally, to expand sideways."

She was candid about the disruption: "The first rungs on our career ladders are indeed going away. I know because my company is automating them." But she insisted this creates opportunity for work that is "more creative, more strategic, more driven by curiosity and impact — and I believe a lot more human than the jobs that they're replacing."

The third shift: When execution becomes free, ambition becomes the only bottleneck

The final shift is from optimization to creation. "Before AI, we used to call it transformation when we took 12 steps and made them nine," Habib said. "That's optimizing the world as it is. We can now create a new world. That is the greenfield mindset."

She challenged executives to identify assumptions their industries are built on that AI now disrupts. Writer's customers, she said, are already seeing new categories of growth: treating every customer like their only customer, democratizing premium services to broader markets, and entering new markets at unprecedented speed because "AI strips away the friction to access new channels."

"When execution is abundant, the only bottleneck is the scope of your own ambition," Habib declared.

What this means for CIOs: Building the stadium while business leaders design the plays

Habib didn't leave IT leaders without a role — she redefined it. "If tech is everyone's job, you might be asking, what is mine?" she addressed CIOs. "Yours is to provide the mission critical infrastructure that makes this revolution possible."

As tens or hundreds of thousands of AI agents operate at various levels of autonomy within organizations, "governance becomes existential," she explained. "The business leader's job is to design the play, but you have to build the stadium, you have to write the rule book, and you have to make sure these plays can win at championship scale."

The formulation suggests a partnership model: business leaders drive workflow redesign and strategic implementation while IT provides the infrastructure, governance frameworks, and security guardrails that make mass AI deployment safe and scalable. "One can't succeed without the other," Habib said.

For CIOs and technical leaders, this represents a fundamental shift from gatekeeper to enabler. When business units deploy agents autonomously, IT faces governance challenges unlike anything in enterprise software history. Success requires genuine partnership between business and IT — neither can succeed alone, forcing cultural changes in how these functions collaborate.

A real example: From multi-day scrambles to instant answers during a market crisis

To ground her arguments in concrete business impact, Habib described working with the chief client officer of a Fortune 500 wealth advisory firm during recent market volatility following tariff announcements.

"Their phone was ringing off the hook with customers trying to figure out their market exposure," she recounted. "Every request kicked off a multi-day, multi-person scramble: a portfolio manager ran the show, an analyst pulled charts, a relationship manager built the PowerPoint, a compliance officer had to review everything for disclosures. And the leader in all this — she was forwarding emails and chasing updates. This is the top job: managing complexity."

With an agentic AI system, the same work happens programmatically. "A system of agents is able to assemble the answer faster than any number of people could have. No more midnight deck reviews. No more days on end" of coordination, Habib said.

This isn't about marginal productivity gains — it's about fundamentally different operating models where senior executives shift from managing coordination to designing intelligent systems.

Why so many AI initiatives are failing despite massive investment

Habib's arguments arrive as many enterprises face AI disillusionment. After initial excitement about generative AI, many companies have struggled to move beyond pilots and demonstrations to production deployments generating tangible business value.

Her diagnosis — that leaders are delegating rather than driving transformation — aligns with growing evidence that organizational factors, not technical limitations, explain most failures. Companies often lack clarity on use cases, struggle with data preparation, or face internal resistance to workflow changes that AI requires.

Perhaps the most striking aspect of Habib's presentation was her willingness to acknowledge the human cost of AI transformation — and insist leaders address it rather than avoid it. "Your job as a leader is to not look away from this fear. Your job is to face it with a plan," she told the audience.

She described "productivity anchoring" as a form of "self-sabotage" where employees resist AI adoption because their identity and self-worth are tied to execution tasks AI can now perform. The phenomenon suggests that successful AI transformation requires not just technical and strategic changes but psychological and cultural work that many leaders may be unprepared for.

Two challenges: Get your hands dirty, then reimagine everything

Habib closed by throwing down two gauntlets to her executive audience.

"First, a small one: get your hands dirty with agentic AI. Don't delegate. Choose a process that you oversee and automate it. See the difference from managing a complex process to redesigning it for yourself."

The second was more ambitious: "Go back to your team and ask, what could we achieve if execution were free? What would work feel like, be like, look like if you're unbound from the friction and process that slows us down today?"

She concluded: "The tools for creation are in your hands. The mandate for leadership is on your shoulders. What will you build?"

For enterprise leaders accustomed to viewing AI as an IT initiative, Habib's message is clear: that approach isn't working, won't work, and reflects a fundamental misunderstanding of what AI represents. Whether executives embrace her call to personally drive transformation — or continue delegating to IT departments — may determine which organizations thrive and which become cautionary tales.

The statistic she opened with lingers uncomfortably: 42% of Fortune 500 C-suite executives say AI is tearing their companies apart. Habib's diagnosis suggests they're tearing themselves apart by clinging to organizational models designed for an era when execution was scarce. The cure she prescribes requires leaders to do something most find uncomfortable: stop managing complexity and start dismantling it.

Kai-Fu Lee's brutal assessment: America is already losing the AI hardware war to China

China is on track to dominate consumer artificial intelligence applications and robotics manufacturing within years, but the United States will maintain its substantial lead in enterprise AI adoption and cutting-edge research, according to Kai-Fu Lee, one of the world's most prominent AI scientists and investors.

In a rare, unvarnished assessment delivered via video link from Beijing to the TED AI conference in San Francisco Tuesday, Lee — a former executive at Apple, Microsoft, and Google who now runs both a major venture capital firm and his own AI company — laid out a technology landscape splitting along geographic and economic lines, with profound implications for both commercial competition and national security.

"China's robotics has the advantage of having integrated AI into much lower costs, better supply chain and fast turnaround, so companies like Unitree are actually the farthest ahead in the world in terms of building affordable, embodied humanoid AI," Lee said, referring to a Chinese robotics manufacturer that has undercut Western competitors on price while advancing capabilities.

The comments, made to a room filled with Silicon Valley executives, investors, and researchers, represented one of the most detailed public assessments from Lee about the comparative strengths and weaknesses of the world's two AI superpowers — and suggested that the race for artificial intelligence leadership is becoming less a single contest than a series of parallel competitions with different winners.

Why venture capital is flowing in opposite directions in the U.S. and China

At the heart of Lee's analysis lies a fundamental difference in how capital flows in the two countries' innovation ecosystems. American venture capitalists, Lee said, are pouring money into generative AI companies building large language models and enterprise software, while Chinese investors are betting heavily on robotics and hardware.

"The VCs in the US don't fund robotics the way the VCs do in China," Lee said. "Just like the VCs in China don't fund generative AI the way the VCs do in the US."

This investment divergence reflects different economic incentives and market structures. In the United States, where companies have grown accustomed to paying for software subscriptions and where labor costs are high, enterprise AI tools that boost white-collar productivity command premium prices. In China, where software subscription models have historically struggled to gain traction but manufacturing dominates the economy, robotics offers a clearer path to commercialization.

The result, Lee suggested, is that each country is pulling ahead in different domains — and may continue to do so.

"China's got some challenges to overcome in getting a company funded as well as OpenAI or Anthropic," Lee acknowledged, referring to the leading American AI labs. "But I think U.S., on the flip side, will have trouble developing the investment interest and value creation in the robotics" sector.

Why American companies dominate enterprise AI while Chinese firms struggle with subscriptions

Lee was explicit about one area where the United States maintains what appears to be a durable advantage: getting businesses to actually adopt and pay for AI software.

"The enterprise adoption will clearly be led by the United States," Lee said. "The Chinese companies have not yet developed a habit of paying for software on a subscription."

This seemingly mundane difference in business culture — whether companies will pay monthly fees for software — has become a critical factor in the AI race. The explosion of spending on tools like GitHub Copilot, ChatGPT Enterprise, and other AI-powered productivity software has fueled American companies' ability to invest billions in further research and development.

Lee noted that China has historically overcome similar challenges in consumer technology by developing alternative business models. "In the early days of internet software, China was also well behind because people weren't willing to pay for software," he said. "But then advertising models, e-commerce models really propelled China forward."

Still, he suggested, someone will need to "find a new business model that isn't just pay per software per use or per month basis. That's going to not happen in China anytime soon."

The implication: American companies building enterprise AI tools have a window — perhaps a substantial one — where they can generate revenue and reinvest in R&D without facing serious Chinese competition in their core market.

How ByteDance, Alibaba and Tencent will outpace Meta and Google in consumer AI

Where Lee sees China pulling ahead decisively is in consumer-facing AI applications — the kind embedded in social media, e-commerce, and entertainment platforms that billions of people use daily.

"In terms of consumer usage, that's likely to happen," Lee said, referring to China matching or surpassing the United States in AI deployment. "The Chinese giants, like ByteDance and Alibaba and Tencent, will definitely move a lot faster than their equivalent in the United States, companies like Meta, YouTube and so on."

Lee pointed to a cultural advantage: Chinese technology companies have spent the past decade obsessively optimizing for user engagement and product-market fit in brutally competitive markets. "The Chinese giants really work tenaciously, and they have mastered the art of figuring out product market fit," he said. "Now they have to add technology to it. So that is inevitably going to happen."

This assessment aligns with recent industry observations. ByteDance's TikTok became the world's most downloaded app through sophisticated AI-driven content recommendation, and Chinese companies have pioneered AI-powered features in areas like live-streaming commerce and short-form video that Western companies later copied.

Lee also noted that China has already deployed AI more widely in certain domains. "There are a lot of areas where China has also done a great job, such as using computer vision, speech recognition, and translation more widely," he said.

The surprising open-source shift that has Chinese models beating Meta's Llama

Perhaps Lee's most striking data point concerned open-source AI development — an area where China appears to have seized leadership from American companies in a remarkably short time.

"The 10 highest rated open source [models] are from China," Lee said. "These companies have now eclipsed Meta's Llama, which used to be number one."

This represents a significant shift. Meta's Llama models were widely viewed as the gold standard for open-source large language models as recently as early 2024. But Chinese companies — including Lee's own firm, 01.AI, along with Alibaba, Baidu, and others — have released a flood of open-source models that, according to various benchmarks, now outperform their American counterparts.

The open-source question has become a flashpoint in AI development. Lee made an extensive case for why open-source models will prove essential to the technology's future, even as closed models from companies like OpenAI command higher prices and, often, superior performance.

"I think open source has a number of major advantages," Lee argued. With open-source models, "you can examine it, tune it, improve it. It's yours, and it's free, and it's important for building if you want to build an application or tune the model to do something specific."

He drew an analogy to operating systems: "People who work in operating systems loved Linux, and that's why its adoption went through the roof. And I think in the future, open source will also allow people to tune a sovereign model for a country, make it work better for a particular language."

Still, Lee predicted both approaches will coexist. "I don't think open source models will win," he said. "I think just like we have Apple, which is closed, but provides a somewhat better experience than Android... I think we're going to see more apps using open-source models, more engineers wanting to build open-source models, but I think more money will remain in the closed model."

Why China's manufacturing advantage makes the robotics race 'not over, but' nearly decided

On robotics, Lee's message was blunt: the combination of China's manufacturing prowess, lower costs, and aggressive investment has created an advantage that will be difficult for American companies to overcome.

When asked directly whether the robotics race was already over with China victorious, Lee hedged only slightly. "It's not over, but I think the U.S. is still capable of coming up with the best robotic research ideas," he said. "But the VCs in the U.S. don't fund robotics the way the VCs do in China."

The challenge is structural. Building robots requires not just software and AI, but hardware manufacturing at scale — precisely the kind of integrated supply chain and low-cost production that China has spent decades perfecting. While American labs at universities and companies like Boston Dynamics continue to produce impressive research prototypes, turning those prototypes into affordable commercial products requires the manufacturing ecosystem that China possesses.

Companies like Unitree have demonstrated this advantage concretely. The company's humanoid robots and quadrupedal robots cost a fraction of their American-made equivalents while offering comparable or superior capabilities — a price-to-performance ratio that could prove decisive in commercial markets.

What worries Lee most: not AGI, but the race itself

Despite his generally measured tone about China's AI development, Lee expressed concern about one area where he believes the global AI community faces real danger — not the far-future risk of superintelligent AI, but the near-term consequences of moving too fast.

When asked about AGI risks, Lee reframed the question. "I'm less afraid of AI becoming self-aware and causing danger for humans in the short term," he said, "but more worried about it being used by bad people to do terrible things, or by the AI race pushing people to work so hard, so fast and furious and move fast and break things that they build products that have problems and holes to be exploited."

He continued: "I'm very worried about that. In fact, I think some terrible event will happen that will be a wake up call from this sort of problem."

Lee's perspective carries unusual weight because of his unique vantage point spanning both Chinese and American AI development. Over a career spanning more than three decades, he has held senior positions at Apple, Microsoft, and Google, while also founding Sinovation Ventures, which has invested in more than 400 companies across both countries. His AI company, 01.AI, founded in 2023, has released several open-source models that rank among the most capable in the world.

For American companies and policymakers, Lee's analysis presents a complex strategic picture. The United States appears to have clear advantages in enterprise AI software, fundamental research, and computing infrastructure. But China is moving faster in consumer applications, manufacturing robotics at lower costs, and potentially pulling ahead in open-source model development.

The bifurcation suggests that rather than a single "winner" in AI, the world may be heading toward a technology landscape where different countries excel in different domains — with all the economic and geopolitical complications that implies.

As the TED AI conference continued Wednesday, Lee's assessment hung over subsequent discussions. His message seemed clear: the AI race is not one contest, but many — and the United States and China are each winning different races.

Standing in the conference hall afterward, one venture capitalist, who asked not to be named, summed up the mood in the room: "We're not competing with China anymore. We're competing on parallel tracks." Whether those tracks eventually converge — or diverge into entirely separate technology ecosystems — may be the defining question of the next decade.

❌